Chinese Chemical Letters 20 (2009) 817-819 ## A new cycloartane nortriterpenoid from Quercus variabilis Blume Yan Xin, Ling Yun Jia, Jiu Zhi Yuan, Qi Shi Sun* School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China Received 29 October 2008 ## Abstract The leaves and stems of *Quercus variabilis* Blume afforded a new cycloartane nortriterpenoid, 3α -acetyloxy- 4α , 14α -dimethyl- 9β , 19-cycloergost-24-oic acid (1), along with five known compounds (2–6). The structure of 1 was elucidated by 1D and 2D NMR and mass spectroscopy. © 2009 Qi Shi Sun. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved. Keywords: Quercus variabilis Blume; Cycloartane nortriterpenoid Quercus variabilis Blume is widely distributed in the north and east of China. As a Chinese folk medicine, its twig is used to treat esophagus cancer. Early studies on the plant have reported the isolation and identification of some triterpenoids [1,2]. We now report the isolation and identification of a new cycloartane nortriterpenoid, 3α -acetyloxy- 4α , 14α -dimethyl- 9β , 19-cycloergost-24-oic acid (1), along with five known compounds, 3-epicycloeucalenol (2) [3], 3-epicycloeucalenyl-24-one (3) [1], 3-epicycloeucalenyl acetate (4) [1], 4β , 14α -dimethyl- 5α -ergosta- 9β , 19-cycloeucalenyl-24-ore 3β -hydroxy- -hydrox The leaves and stems of *Q. variabilis* Blume were collected in Dalian, Liaoning province, China and identified by Dr. Jiu-Zhi Yuan. A voucher specimen (no. 20060901) was deposited in the Herbarium of Shenyang Pharmaceutical University. The air-dried material (10 kg) was extracted with 95% EtOH. The ethanol extract (990 g) was suspended in water and partitioned with petroleum ether, CHCl₃, EtOAc and *n*-BuOH, successively. The CHCl₃ extract (180 g) was separated by repeated silica gel column chromatography and sephadex LH-20 to give compounds **1–6**. Compound **1** was obtained as colorless needles (methanol), mp 78–80 °C, $[\alpha]_D^{26}$ +2.6 (c 1.0, CHCl₃). It showed a quasimolecular ion peak at m/z 467.3133 [M+Na]⁺ (calcd. 467.3137) in HR–ESI–MS corresponding to the molecular formula $C_{28}H_{44}O_4$. The IR spectrum of **1** showed the presence of carbonyl group (1731 cm⁻¹), carboxyl group (3441 cm⁻¹, 1710 cm⁻¹) and cyclopropyl group (3040 cm⁻¹, 973 cm⁻¹). Its EI–MS spectrum showed molecular ion peak at m/z 444 accompanied with diagnostic fragment ion peaks at m/z 384 [M–CH₃COOH]⁺, 276 [M–C₁₀H₁₆O₂ (ring A)]⁺, 343 [M–C₅H₉O₂ (side-chain)]⁺, and 175 [M–C₁₀H₁₆O₂ (ring A) – C₅H₉O₂ (side-chain)]⁺. The ¹H NMR spectral data of **1** showed the characteristic cyclopropane methylene signals [δ 0.37 and 0.13 (d, each 1H, J = 3.9 Hz)], along with two tertiary methyls [δ 0.92 and 0.98 (s, each 3H)], two secondary methyls [δ 0.84 and 0.90 (d, each 3H, E-mail address: sunqishi@sina.com (Q.S. Sun). ^{*} Corresponding author. $$\begin{array}{c} & & & \\ & &$$ 4 $R_1 = OAc$, $R_2 = R_4 = H$, $R_3 = CH_3$, $R_5 = CH_2$, 5 $R_1 = H$, $R_2 = OH$, $R_3 = COOH$, $R_4 = CH_3$, $R_5 = CH_2$ 6 $R_1 = R_2 = O$, $R_3 = CH_3$, $R_4 = H$, $R_5 = CH_2$ Fig. 1. Structures of compounds 1–6 and main HMBC (H \rightarrow C) correlations of 1. 2 R₁ = OH, R₂ = R₄ = H, R₃ = CH₃, R₅ = CH₂; 3 R₁ = OH, R₂ = R₄ = H, R₃ = CH₃, R₅ = CH₂; 6 R₁ = R₂ = O, R₃ = CH₃, R₄ = H, R₅ = CH₂. J=6.6 Hz)], an acetyl methyl [δ 2.09 (s, 3H)], and an oxymethine proton [δ 5.00 (br s, 1H)]. These were identical to those of the other cycloartane-type triterpenoids isolated from Q. variabilis Blume [1,3–5]. The 13 C NMR spectrum of 1, however, displayed only 28 carbon signals, and thus 1 was assigned as a norcycloartane-type triterpenoid. The 13 C NMR spectrum of 1 revealed a methylene carbon of cyclopropane ring at δ 26.4 (C-19), an oxygenated methine carbon at δ 75.1 (C-3), and two carbonyl carbons (δ 171.1 and 180.1) due to an acetyl carbonyl group and a free carboxylic acid group. The 13 C NMR spectral data of 1 were similar to those of 3-epicycloeucalenyl acetate (4) [1] except for the side-chain. On the basis of the HMBC spectrum and the long-range correlations observed in the HMBC spectrum (Fig. 1), the position of the carboxylic acid group was determined as C-23. The positions of the acetyl group and 4-CH₃ were determined as C-3 α and C-4 α by comparing the chemical shifts and the coupling constants of H-3 (δ 5.00, br s) and H-4 (δ 1.50, m) with those of 3-epicycloeucalenyl acetate (4). The 1 H and 13 C NMR data were assigned from the DEPT, HMQC, and HMBC spectra (Table 1). Therefore, the structure of 1 was established as 3 α -acetyloxy-4 α , 14 α -dimethyl-9 β , 19-cycloergost-24-oic acid. Table 1 1 H (600 MHz) and 13 C (150 MHz) NMR data of compound 1 (in CDCl₃, δ ppm, J Hz). | No. | $\delta_{ m c}$ | $\delta_{ m H}$ | No. | $\delta_{ m c}$ | $\delta_{ m H}$ | |-----|-----------------|--|-----------|-----------------|---------------------------------------| | 1 | 27.4 (t) | 1.73 (m, 1H), 1.06 (m, 1H) | 17 | 52.0 (d) | 1.60 (m, 1H) | | 2 | 30.2 (t) | 1.90 (m, 1H), 1.62 (m, 1H) | 18 | 17.9 (q) | 0.98 (s, 3H) | | 3 | 75.1 (d) | 5.00 (br s, 1H) | 19 | 26.4 (t) | 0.37 (d, 1H, $J = 3.9$) | | | | | | | 0.13 (d, 1H, J = 3.9) | | 4 | 39.8 (d) | 1.50 (m, 1H) | 20 | 35.6 (d) | 1.48 (m, 1H) | | 5 | 39.0 (d) | 1.70 (m, 1H) | 21 | 17.9 (q) | 0.90 (d, 3H, J = 6.6) | | 6 | 24.5 (t) | 1.60 (m, 1H), 0.52 (ddd, 1H, $J = 14.9$, 12.4, 2.5) | 22 | 31.1 (t) | 1.88 (m, 1H), 1.30 (m, 1H) | | 7 | 24.8 (t) | 1.36 (m, 1H), 1.08 (m, 1H) | 23 | 31.0 (t) | 2.41 (ddd, 1H, $J = 15.6$, 9.9, 4.8) | | | | | | | 2.30 (ddd, 1H, $J = 15.6$, 9.7, 6.7) | | 8 | 47.1 (d) | 1.60 (m, 1H) | 24 | 180.1 (s) | | | 9 | 23.2 (s) | | 25 | | | | 10 | 29.9 (s) | | 26 | | | | 11 | 26.7 (t) | 1.96 (m, 1H), 1.19 (m, 1H) | 27 | | | | 12 | 32.8 (t) | 1.60 (m, 2H) | 28 | 15.0 (q) | 0.84 (d, 3H, J = 6.6) | | 13 | 45.3 (s) | | 29 | | | | 14 | 48.9 (s) | | 30 | 19.1 (q) | 0.92 (s, 3H) | | 15 | 35.3 (t) | 1.31 (m, 2H) | $OCOCH_3$ | 171.1 (s) | | | 16 | 27.9 (t) | 1.93 (m, 1H) | $OCOCH_3$ | 21.3 (q) | 2.09 (s, 3H) | | | | 1.31 (m, 1H) | | | | ## References - [1] L.H. Zhou, Q.S. Sun, Y. Wang, Chin. Chem. Lett. 14 (12) (2003) 1265. - [2] L.H. Zhou, Q.S. Sun, L.C. Qiao, et al. J. Shenyang Pharm. Univ. 17 (03) (2000) 179. - [3] T. Akihisa, Y. Kimura, T. Tamura, Phytochemistry 47 (1998) 1107. - [4] A.H. Banskota, Y. Tezuka, K.Q. Tran, et al. Chem. Pharm. Bull. 48 (4) (2000) 496. - [5] T. Akihisa, Y. Kimura, W.C.M.C. Kokke, et al. Chem. Pharm. Bull. 45 (4) (1997) 744.